HOLIDAYS HOME WORK (40 QUESTION) IX MATHS : KV NAHARA

S.N.	QUESTIONS
1	Are the following statements true or false? Give reasons for your answers. (i) Every whole number is a natural number. (ii) Every integer is a rational number. (iii) Every rational number is an integer
2	Find six rational numbers between 3 and 4.
3	Show how $\sqrt{ } 5$ can be represented on the number line
4	State whether the following statements are true or false. Justify your answers. (i) Every irrational number is a real number. (ii) Every point on the number line is of the form m, where m is a natural number. (iii) Every real number is an irrational number
5	Show that $1.272727 \ldots=1 . \overline{27}$. can be expressed in the form p / q, where p and q are integers and $q \neq 0$.
6	Express the following in the form p / q, where p and q are integers and $\mathrm{q} \neq 0$. (i) $0 . \overline{6}$. (ii) $0 . \overline{47}$. (iii) $0 . \overline{001}$
7	Find three different irrational numbers between the rational numbers $\frac{5}{7}$ and $\frac{9}{11}$
8	Locate $\sqrt{3}$ on the number line.
9	Find five rational numbers between 1 and 2.
10	Show that $0.3333 \ldots=0 . \overline{3}$. can be expressed in the form p / q, where p and q are integers and $q \neq 0$.
11	Visualise $4 \overline{26}$. on the number line, up to 4 decimal places.
12	Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$
13	Rationalise the denominator of $\frac{5}{\sqrt{3}-\sqrt{5}}$
14	Simplify : (i) $(64)^{\frac{1}{6}}$ (ii) $(125)^{\frac{-1}{3}}$
15	Simplify : $7^{\frac{1}{5}}-7^{\frac{1}{3}}$
16	Rationalise the denominator of $\frac{1}{\sqrt{5}+\sqrt{3}}$
17	Find a zero of the polynomial $\mathrm{p}(\mathrm{x})=2 \mathrm{x}+1$.
18	Find $p(0), p(1)$ and $p(2)$ for each of the following polynomial $p(x)=(x-1)(x+1)$
19	Find the zero of the polynomial (i) $\mathrm{p}(\mathrm{x})=3 \mathrm{x}-2$ (ii) $p(x)=c x+d, c \neq 0, c, d$ are real numbers
20	Divide $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$, where $\mathrm{p}(\mathrm{x})=\mathrm{x}+3 \mathrm{x}^{2}-1$ and $\mathrm{g}(\mathrm{x})=1+\mathrm{x}$.
21	Divide the polynomial $3 x^{4}-4 x^{3}-3 x-1$ by $x-1$ and verify the same.
22	Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.
23	Find the value of k, if $x-1$ is a factor of $4 x^{3}+3 x^{2}-4 x+k$.

24	Factorise : $\mathrm{y}^{2}-5 y+6$ by using the Factor Theorem.		
25	Factorise : $x^{3}+13 x^{2}+32 x+20$		
26			
1	The coordinates of B.		
Ii	The coordinates of C .		
lii	The point identified by the coordinates ($-3,-5$).		
Iv	The point identified by the coordinates $(2,-4)$.		
v	The abscissa of the point D.		
vi	The ordinate of the point H .		
vii	The coordinates of the point L .		
viii	The coordinates of the point M .		
27	In which quadrant or on which axis do each of the points $(-2,4),(3,-1),(-1,0),(1,2)$ and $(-3,-5)$ lie? Verify your answer by locating them on the Cartesian plane.		
28	Find four different solutions of the equation $x+2 y=6$.		
29	Find the value of k, if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$.		
30	The taxi fare in a city is as follows: For the first kilometre, the fare is `8 and for the subsequent distance it is` 5 per km. Taking the distance covered as $x \mathrm{~km}$ and total fare as `y , write a linear equation for this information, and draw its graph \\ \hline 31 & \begin{tabular}{l} In countries like USA and Canada, temperature is measured in Fahrenheit, whereas in countries like India, it is measured in Celsius. Here is a linear equation that converts Fahrenheit to Celsius: \(F=\frac{9}{5} C+32\) \\ (i) Draw the graph of the linear equation above using Celsius for x -axis and Fahrenheit for \(y\)-axis. \\ (ii) If the temperature is \(30^{\circ} \mathrm{C}\), what is the temperature in Fahrenheit? \\ (iii) If the temperature is \(95^{\circ} \mathrm{F}\), what is the temperature in Celsius? \\ (iv) If the temperature is \(0^{\circ} \mathrm{C}\), what is the temperature in Fahrenheit and if the temperature is \(0^{\circ} \mathrm{F}\), what is the temperature in Celsius? \\ (v) Is there a temperature which is numerically the same in both Fahrenheit and Celsius? If yes, find it. \end{tabular} \\ \hline 32 & \begin{tabular}{l} Give the geometric representations of \(2 x+9=0\) as an equation \\ (i) in one variable \\ (ii) in two variables \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline 33 & \begin{tabular}{l} Yamini and Fatima, two students of Class IX of a school, together contributed` 100 towards the
Prime Minister's Relief Fund to help the earthquake victims. Write a linear equation which			
satisfies this data. (You may take their contributions as `\(x\) and` y.) Draw the graph of the same.		 	

\hline 34 \& Draw the graph of $x+y=7$.

\hline 35 \& | Locate the points $(5,0),(0,5),(2,5),(5,2),(-3,5),(-3,-5),(5,-3)$ and $(6,1)$ in the Cartesian |
| :--- |
| plane. |

\hline 36 \& Find the remainder obtained on dividing $p(x)=x^{3}+1$ by $x+1$.

\hline 37 \& Write the Remainder Theorem.

\hline 38 \& Represent $\sqrt{ } 9.3$ on the number line.

\hline 39 \& Rationalise the denominator of $\frac{1}{7+3 \sqrt{2}}$

\hline 40 \& Write three numbers whose decimal expansions are non-terminating non-recurring.

\hline
\end{tabular}

